When shot-noise-limited photodetectors disobey Poisson statistics
Author(s) -
Jacob Rabinowitz,
Mohsen Rezaei,
Min-Su Park,
Chee Leong Tan,
M. P. Ulmer,
Hooman Mohseni
Publication year - 2020
Publication title -
optics letters
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.389908
Subject(s) - shot noise , photodetector , noise (video) , optics , electronics , optoelectronics , cmos , poisson distribution , photodiode , image sensor , physics , detector , computer science , artificial intelligence , electrical engineering , statistics , engineering , image (mathematics) , mathematics
Photodetectors with internal gain are of great interest for imaging applications, since internal gain reduces the effective noise of readout electronics. High-gain photodetectors have been demonstrated, but only individually rather than as a full array in a camera. Consequently, there has been little investigation of the interaction between camera complementary metal oxide semiconductor (CMOS) electronics and the slow response time that high-gain photodetectors often exhibit. Here we show that this interaction filters shot noise and causes noise statistics to differ from the common Poisson distribution. As an example, we investigate a 320×256 array of InGaAs/InP high-gain phototransistors bonded to a CMOS readout chip. We demonstrate the filtering effects and discuss their consequences, including new (to the best of our knowledge) methods for extracting gain and increasing dynamic range.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom