
Ultra compact Bragg grating devices with broadband selectivity
Author(s) -
Ang Li,
Jordan Davis,
Yeshaiahu Fainman
Publication year - 2020
Publication title -
optics letters/optics index
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.384688
Subject(s) - stopband , grating , materials science , optics , physics , band pass filter
Current silicon waveguide Bragg gratings typically introduce perturbation to the optical mode in the form of modulation of the waveguide width or cladding. However, since such a perturbation approach is limited to weak perturbations to avoid intolerable scattering loss and higher-order modal coupling, it is difficult to produce ultra-wide stopbands. In this Letter, we report an ultra-compact Bragg grating device with strong perturbations by etching nanoholes in the waveguide core to enable an ultra-large stopband with apodization achieved by proper location of the nanoholes. With this approach, a 15 µm long device can generate a stopband as wide as 110 nm that covers the entire ${\rm C} + {\rm L}$C+L band with a 40 dB extinction ratio and over a 10 dB sidelobe suppression ratio (SSR). Similar structures can be further optimized to achieve higher SSR of $ \gt {17}\;{\rm dB}$>17dB for a stopband of about 80 nm.