Open Access
Quantitative strain sensing in a multimode fiber using dual frequency speckle pattern tracking
Author(s) -
Matthew J. Murray,
Brandon Redding
Publication year - 2020
Publication title -
optics letters/optics index
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.383569
Subject(s) - speckle pattern , optics , materials science , physics
We report an amplitude-measuring multimode fiber sensor capable of making quantitative strain measurements and extracting the algebraic sign of the strain. The Rayleigh-based sensor probes the fiber with pulses of alternating optical frequency and records the backscattered speckle patterns on a high-speed camera. We show that measuring the change in the speckle pattern induced by a change in optical frequency provides a form of in situ calibration, enabling the sensor to recover the magnitude and algebraic sign of the strain. The sensor, which can be positioned anywhere along 2 km of fiber, has a linear strain response, a 10 kHz bandwidth, and a strain noise of ${10.2}\;{\rm p}\unicode{x03B5} /\surd {{\rm Hz}} $10.2pε/√Hz.