High-resolution three-dimensional holographic display using dense ray sampling from integral imaging
Author(s) -
Koki Wakunami,
Masahiro Yamaguchi,
Bahram Javidi
Publication year - 2012
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.37.005103
Subject(s) - integral imaging , optics , holography , sampling (signal processing) , wavefront , focus (optics) , holographic display , resolution (logic) , image resolution , plane (geometry) , diffraction , physics , computer science , detector , computer vision , artificial intelligence , geometry , image (mathematics) , mathematics
We present a high-resolution three-dimensional (3D) holographic display using a set of elemental images obtained by passive sensing integral imaging (II). Hologram calculations using a high-density ray-sampling plane are achieved from the elemental images captured by II. In II display, ray sampling by lenslet array and light diffraction limits the achievable resolution. Our approach can improve the resolution since target objects are captured in focus and then light-ray information is interpolated and resampled with higher density on ray-sampling plane located near the object to be converted into the wavefront. Numerical experimental results show that the 3D scene, composed of plural objects at different depths from the display, can be reconstructed with order of magnitude higher resolution by the proposed technique.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom