Enhanced photonic crystal cavity-waveguide coupling using local slow-light engineering
Author(s) -
Khaled Mnaymneh,
S. Frédérick,
Dan Dalacu,
J. Lapointe,
Philip J. Poole,
Robin L. Williams
Publication year - 2012
Publication title -
optics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 272
eISSN - 1071-2763
pISSN - 0146-9592
DOI - 10.1364/ol.37.000280
Subject(s) - transmittance , coupling (piping) , photonic crystal , optics , waveguide , planar , materials science , slow light , optoelectronics , port (circuit theory) , quantum optics , photonics , physics , electronic engineering , computer science , computer graphics (images) , engineering , metallurgy
This Letter introduces an enhanced cavity-waveguide coupling architecture based upon slow-light engineering in a two-port photonic crystal system. After analyzing the system transmittance using coupled-mode theory, the system is probed experimentally and shown to have increased transmittance due to the enhanced cavity-waveguide coupling. Such a coupling architecture may facilitate next-generation planar lightwave circuitry such as onchip quantum information processing or high precision light-matter sensing applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom