Non-sequential double ionization of helium and related wave-function dynamics obtained from a five-dimensional grid calculation
Author(s) -
H. G. Muller
Publication year - 2001
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.8.000417
Subject(s) - double ionization , ionization , helium , physics , electric field , atomic physics , electron , pulse (music) , optics , ion , quantum mechanics , detector
Numerical integration of the time-dependent Schroedinger equation for two three-dimensional electrons reveals the behavior of helium in the presence of strong 390 nm and 800 nm light. Non-sequential double ionization is seen to take place predominantly at times when the electric-field component of the light reaches its peak value. Double ionization starts only in the second cycle of a flat-top pulse, and reaches a stable value only after many cycles, showing that recollision, sometimes through very long trajectories, must be involved.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom