z-logo
open-access-imgOpen Access
Analysis on image quality of a holographic lens with a non-converging signal wave for compact near-eye displays
Author(s) -
Jiwoon Yeom,
Jinsoo Jeong,
Jisoo Hong,
KwangSoon Choi
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.473125
Subject(s) - zemax , optics , holography , lens (geology) , image quality , computer science , optical engineering , ray tracing (physics) , transmittance , pixel , wavefront , microlens , physics , software , artificial intelligence , image (mathematics) , programming language
We analyze an image quality of a holographic lens (HL) in order to implement compact near-eye displays using a flat-panel-type micro-display panel. The proposed method utilizes a non-converging signal wave in a fabrication process of the HL, so that it provides affordable eye-box size with minimizing the aberration due to rays in the off-Bragg condition. For analyzing and optimizing the HL based on the non-converging signal wave, we introduce a comprehensive analysis model for an assessment of the image quality in the HL. The analysis model, inspired from the conventional lens design strategy for near-eye displays, evaluates the focal spot quality for incident rays forming each pixel with considering the on- and off-Bragg diffraction. The theoretical analysis is validated by simulation results using a volume hologram model in Zemax OpticStudio. As experimental verifications, we realize a prototype system using photopolymer-based HLs in a green color with the high transmittance of 89.3%. The image quality of the HLs is analyzed, which coincides well with the proposed analysis and assessment metric. By building a compact experimental setup employing the HL and a micro-organic light emitting diode display, we present see-through images with 8.0 mm of eye-box with reduced aberrations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom