
Analysis on image quality of a holographic lens with a non-converging signal wave for compact near-eye displays
Author(s) -
Jiwoon Yeom,
Jinsoo Jeong,
Jisoo Hong,
Kwang-Soon Choi
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.473125
Subject(s) - zemax , optics , holography , lens (geology) , image quality , computer science , optical engineering , ray tracing (physics) , transmittance , pixel , wavefront , microlens , physics , software , artificial intelligence , image (mathematics) , programming language
We analyze an image quality of a holographic lens (HL) in order to implement compact near-eye displays using a flat-panel-type micro-display panel. The proposed method utilizes a non-converging signal wave in a fabrication process of the HL, so that it provides affordable eye-box size with minimizing the aberration due to rays in the off-Bragg condition. For analyzing and optimizing the HL based on the non-converging signal wave, we introduce a comprehensive analysis model for an assessment of the image quality in the HL. The analysis model, inspired from the conventional lens design strategy for near-eye displays, evaluates the focal spot quality for incident rays forming each pixel with considering the on- and off-Bragg diffraction. The theoretical analysis is validated by simulation results using a volume hologram model in Zemax OpticStudio. As experimental verifications, we realize a prototype system using photopolymer-based HLs in a green color with the high transmittance of 89.3%. The image quality of the HLs is analyzed, which coincides well with the proposed analysis and assessment metric. By building a compact experimental setup employing the HL and a micro-organic light emitting diode display, we present see-through images with 8.0 mm of eye-box with reduced aberrations.