z-logo
open-access-imgOpen Access
Flexible demodulation for rotation-induced phase difference based on a phase-controlled microwave photonic filter
Author(s) -
Jing Zhang,
Muguang Wang,
Beilei Wu,
Qi Ding,
Bin Yin,
Desheng Chen,
Xiaodi Huang
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.472191
Subject(s) - optics , polarization controller , physics , sagnac effect , demodulation , polarizer , phase modulation , beam splitter , phase noise , birefringence , optical fiber , telecommunications , fiber laser , computer science , laser , channel (broadcasting)
High-performance demodulation of Sagnac effect is of great importance for rotation rate measurement in inertial navigation system. In this paper, we propose a flexible measurement of rotation rate based on a phase-controlled microwave photonic filter (MPF), which incorporates an orthogonal double-sideband (ODSB) modulator, a Sagnac loop, a linearly chirped fiber Bragg grating (LCFBG), a polarizer, and a photodetector. The ODSB modulator is used to generate optical carrier (OC) and first-order sidebands with mutually orthogonal polarizations. For the MPF, its central frequency can be tuned through changing the phase difference between the OC and first-order sidebands thanks to the dispersion of the LCFBG. Therefore, if the OC and first-order sidebands are separated by a polarization beam splitter and then travel along the Sagnac loop in opposite directions, the rotation-induced phase difference between them will lead to a shift on the frequency response of the MPF. Thus, two ways can be adopted to detect the rotation rate of the Sagnac loop for different applications: monitoring the frequency response shift of the MPF and measuring the power variation at a certain frequency. Besides, the measurement sensitivity can be easily adjusted to satisfy specific requirements by tuning a polarization controller or choosing a different operating frequency. An experiment is performed to validate the proposed scheme. The results show that the maximum frequency shift of the MPF can reach 1.7 GHz at a rotation rate of 1 rad/s, and a scale factor of 0.016 mW/(rad/s) is obtained at 4 GHz.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom