
Two-step orthogonalization phase demodulation method based on a single differential interferogram
Author(s) -
Jiaosheng Li,
Qinnan Zhang
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.470844
Subject(s) - demodulation , orthogonalization , lissajous curve , zernike polynomials , differential phase , optics , ellipse , normalization (sociology) , interferometry , phase retrieval , phase (matter) , computer science , algorithm , physics , mathematics , channel (broadcasting) , fourier transform , telecommunications , mathematical analysis , wavefront , quantum mechanics , astronomy , sociology , anthropology
To reduce the acquisition time of interferogram and provide a dynamic phase retrieval method with arbitrary phase shift using a dual-channel simultaneous polarization phase-shifting system, a two-step orthogonalization phase demodulation method (TOPD) based on a single differential interferogram is proposed in this paper. In this method, the differential interferogram obtained by subtracting two phase-shifting interferograms and one of the Gaussian filtered based-interferograms are used to normalize and orthogonalize, and then the phase related parameters are solved by the Lissajous ellipse fitting method. Finally, the measured phase is obtained with high accuracy. The proposed method further reduces the deviation caused by the filtering operation performed in the two-step phase demodulation method. At the same time, combined it with the Lissajou ellipse fitting method reduces the limitation associated with the approximation conditions of the orthogonalization and normalization method. The experimental and simulation results demonstrate that this method provides a solution with high accuracy, high stability, strong practicability, and few restrictions for phase extraction in quantitative phase imaging.