z-logo
open-access-imgOpen Access
Perspective clipping and fast rendering of light field images for holographic stereograms using RGBD data
Author(s) -
Xin Liu,
Yimin Lou,
Jinglei Hu,
Jianlong Kou,
Fang Wu
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.470833
Subject(s) - rendering (computer graphics) , light field , holography , computer science , computer vision , optics , holographic display , artificial intelligence , clipping (morphology) , computer graphics (images) , image based modeling and rendering , stereoscopy , stereo display , physics , linguistics , philosophy
The production of holographic stereogram (HS) requires a huge amount of light field data. How to efficiently clip and render these image data remains a challenge in the field. This work focuses on the perspective clipping and fast rendering algorithm for light field images using RGBD data without explicit 3D reconstruction. The RGBD data is expanded to RGBDθ data by introducing a light cone for each point, which gives a new degree of freedom for light field image rendering. Using the light cone and perspective coherence, the visibility of 3D image points can be clipped programmatically. Optical imaging effects including mirror imaging and half mirror imaging effects of 3D images can also be rendered with the help of light cones during the light field rendering process. The perspective coherence is also used to accelerate the rendering, which has been shown to be on average 168% faster than traditional DIBR algorithms. A homemade holographic printing system was developed to make the HSs using the rendered light field images. The vivid 3D effects of the HS have validated the effectiveness of the proposed method. It can also be used in holographic dynamic 3D display, augmented reality, virtual reality, and other fields.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here