z-logo
open-access-imgOpen Access
Detections of the position-vectors of the multi targets located in a circular space based on an asymmetric coupling semiconductor lasers network
Author(s) -
Dongzhou Zhong,
Wanan Deng,
Keke Zhao,
Yalan Hu,
Peng Hou,
JinBo Zhang
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.468554
Subject(s) - ranging , optics , physics , position (finance) , bandwidth (computing) , coupling (piping) , semiconductor laser theory , laser , noise (video) , free space optical communication , omnidirectional antenna , semiconductor , acoustics , computer science , optoelectronics , telecommunications , materials science , artificial intelligence , antenna (radio) , finance , economics , image (mathematics) , metallurgy
We present a novel scheme for the detections of the position-vectors of the multi targets distributed in a circular space using multi channels of the probe chaotic waves emitted by the asymmetric coupling semiconductor lasers network (ACSLN), where these probe waves possess the attractive features of the time-space uncorrelation and wide bandwidth. Using these features, the accurate measurement for the position-vectors of the multi targets can be achieved by correlating the multi channels of the probe waves with their corresponding reference waves. The further research results show that the detections for the position-vectors of the multi targets possess very low relative errors that are no more than 0.22%. The ranging-resolutions for the multi targets located in a circular space can be achieved as high as 3 mm by optimizing some key parameters, such as injection current and injection strength. In addition, the ranging-resolutions exhibit excellent strong anti-noise performance even when the signal-to-noise ratio and relative noise intensity appear obvious enhancement. The detections for the position-vectors of the multi targets based on the ACSLN offers interesting perspectives for the potential applications in the driverless cars and the object tracking system with omnidirectional vision.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here