StarLight: a photonic neural network accelerator featuring a hybrid mode-wavelength division multiplexing and photonic nonvolatile memory
Author(s) -
Pengxing Guo,
Niujie Zhou,
Weigang Hou,
Lei Guo
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.468456
Subject(s) - starlight , computer science , photonics , multiplexing , optical computing , optics , electronic engineering , computer hardware , physics , telecommunications , engineering , stars , computer vision
This paper proposes StarLight, a low-power consumption and high inference throughput photonic artificial neural network (ANN) accelerator featuring the photonic 'in-memory' computing and hybrid mode-wavelength division multiplexing (MDM-WDM) technologies. Specifically, StarLight uses nanophotonic non-volatile memory and passive microring resonators (MRs) to form a photonic dot-produce engine, achieving optical 'in-memory' multiplication operation with near-zero power consumption during the inference phase. Furthermore, we design an on-chip wavelength and mode hybrid multiplexing module and scheme to increase the computational parallelism. As a proof of concept, a 4×4×4 optical computing unit featuring 4-wavelength and 4-mode is simulated with 10 Gbps, 15 Gbps and 20 Gbps data rates. We also implemented a simulation on the Iris dataset classification and achieved an inference accuracy of 96%, which is entirely consistent with the classification accuracy on a 64-bit computer. Therefore, StarLight holds promise for realizing low energy consumption hardware accelerators to address the incoming challenges of data-intensive artificial intelligence (AI) applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom