
Spontaneous giant vortices and circular supercurrents in a trapped exciton–polariton condensate
Author(s) -
Shih-Da Jheng,
Ting-Wei Chen,
Szu-Cheng Cheng
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.468330
Subject(s) - vortex , physics , condensed matter physics , supersonic speed , polariton , optics , mechanics
We theoretically study an exciton-polariton condensate trapped in a harmonic potential with an annular pump. With a circular pump, predictions were made for a spontaneous rotating vortex lattice packed by singly quantized vortices. If the circular pump is replaced by an annular pump, singly quantized vortices are absorbed into the central hole and form a multiply quantized vortex. For a sufficiently narrow annular width, all vortices are absorbed into the central hole, ultimately forming a giant vortex with supersonic circular supercurrents flowing around it. Vortex-antivortex pairs can be generated if a defect is present in these supersonic circular supercurrents. We further discover that the motion of the vortex-antivortex pairs depends on the position at which they were generated. We suggest that this property can be used to control whether the velocity of the circular supercurrents is above or below the sound velocity.