z-logo
open-access-imgOpen Access
Complex refractive indices of Spiro-TTB and C60 for optical analysis of perovskite silicon tandem solar cells
Author(s) -
V. Sittinger,
Patricia S. C. Schulze,
Christoph Messmer,
Andreas Pflug,
Jan Christoph Goldschmidt
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.458953
Subject(s) - refractive index , materials science , perovskite (structure) , silicon , ellipsometry , tandem , optics , optoelectronics , thin film , wavelength , chemistry , crystallography , nanotechnology , physics , composite material
Evaporated charge extraction layers from organic molecular materials are vital in perovskite-based solar cells. For opto-electronic device optimization their complex refractive indices must be known for the visible and near infrared wavelength regime; however, accurate determination from thin organic films below 50 nm can be challenging. By combining spectrophotometry, variable angle spectroscopic ellipsometry, and X-ray reflectivity with an algorithm that simultaneously fits all available spectra, the complex refractive index of evaporated Spiro-TTB and C 60 layers is determined with high accuracy. Based on that, an optical losses analysis for perovskite silicon solar cells shows that 15 nm of Spiro-TTB in the front of a n-i-p device reduces current by only 0.1 mA/cm 2 , compared to a substantial loss of 0.5 mA/cm 2 due to 15 nm of C 60 in a p-i-n device. Optical device simulation predicts high optical generation current densities of 19.7 and 20.1 mA/cm 2 for the fully-textured, module-integrated p-i-n and n-i-p devices, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom