z-logo
open-access-imgOpen Access
Incident-angle-insensitive toroidal metamaterial
Author(s) -
Jie Li,
Jian Shao,
Xin Li,
Zheng Shi,
Yongjin Wang
Publication year - 2022
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.453190
Subject(s) - toroid , dipole , metamaterial , optics , resonance (particle physics) , electric field , polarization (electrochemistry) , physics , excitation , amplitude , asymmetry , atomic physics , chemistry , plasma , quantum mechanics
The incident-angle-insensitive toroidal dipole resonance on an asymmetric double-disk metamaterial is investigated in the near infrared band. Numerical results show that when the incident angle of excitation light varies from 0° to 90°, our metastructure not only always maintains stable toroidal dipole resonance characteristics, but also presents an excellent local field confinement. Under normal incidence, the polarization angle accessible to a dominant toroidal dipole resonance can be expanded to 70° in spite of the weakened electric field amplitude probed in the gap-layer. Moreover, the dependent relationships of toroidal dipole resonance on the radial asymmetry Δr and gap distance are also explored. The local electric field amplitude can also reach a maximum by structural optimization. The works enrich the research of toroidal moment and provide more application potentials in optical devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom