Integrated photonic devices enabled by silicon traveling wave-like Fabry–Perot resonators
Author(s) -
Qiang Liu,
Desheng Zeng,
Chenyang Mei,
LI Hong-we,
Qingzhong Huang,
Xinliang Zhang
Publication year - 2022
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.452450
Subject(s) - resonator , fano resonance , optics , extinction ratio , photonics , photonic integrated circuit , fabry–pérot interferometer , optoelectronics , coupled mode theory , free spectral range , silicon photonics , physics , waveguide , photonic crystal , refractive index , plasmon , wavelength
Integrated photonic devices play a key role in modern optical communications, of which optical resonators are important fundamental structures. This work proposes and experimentally demonstrates compact integrated photonic devices based on a traveling wave-like Fabry-Perot (TW-like FP) resonator(s) coupled with waveguides. Add-drop filters based on a single TW-like FP resonator have been realized with a high drop efficiency and the same output direction for the through and drop ports. Particularly, their transmission response can be either symmetric Lorentzian or asymmetric Fano line shape, through adjusting the shift between the two bus waveguides and the waveguide widths. Fano resonance has been demonstrated in a TW-like FP resonator with a very high extinction ratio and large slope rate. The second-order optical filter exhibits low-loss flat-top passbands with small ripples. Owing to the compact size, easy scalability, and large flexibility, TW-like FP cavity-based devices using Fano and Lorentzian resonances will provide new potential applications in integrated photonics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom