Photon transport enhancement through a coupled-cavity QED system with dynamic modulation
Author(s) -
S. Kato,
Takao Aoki
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.452080
Subject(s) - cavity quantum electrodynamics , physics , photon , optics , modulation (music) , coupling (piping) , photonics , optical cavity , optoelectronics , quantum , materials science , laser , quantum mechanics , open quantum system , acoustics , metallurgy
We investigate photonic transport through fiber optical cavities under tunable fast modulation, which is induced by modulating atom-cavity coupling in a cavity quantum electrodynamics (CQED) system. The modulation bandwidth exceeds the timescales of all other system processes, such as cavity decay and atom-cavity coupling, and allows control of the dynamics of photonic transport through the cavity array. The transmission as a function of the modulation frequency clearly shows enhancement peaks in single cavity and two coupled-cavity cases. In particular, in the coupled-cavity case, the position of the enhancement peak is shifted due to the delocalized cavity field in the coupled system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom