z-logo
open-access-imgOpen Access
Mechanism of emitters coupled with a polymer-based hyperbolic metamaterial
Author(s) -
Ibrahim Issah,
Tuomas Pihlava,
Alireza R. Rashed,
Hümeyra Çağlayan
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.451960
Subject(s) - materials science , metamaterial , polymer , dielectric , wavelength , optoelectronics , optics , physics , composite material
We study a polymer-based hyperbolic metamaterial (HMM) structure composed of three Au-polymer bilayers with a hyperbolic dispersion relation. Using an effective refractive index retrieval algorithm, we obtain the effective permittivity of the experimentally fabricated polymer-based structure. In particular, the unique polymer-based HMM shows the existence of high-k modes that propagate in the metal-dielectric multilayered structure due to the excitation of bulk plasmon-polaritonic modes. Moreover, we compare the experimental luminescence and fluorescence lifetime results of the multilayered Au and a dye-doped polymer (PMMA) to investigate the dynamics of three different emitters, each incorporated within the unique polymer-based HMM structure. With emitters closer to the epsilon-near-zero region of the HMM, we observed a relatively high shortening of the average lifetime as compared to other emitters either close or far from the epsilon-near-zero region. This served as evidence of coupling between the emitters and the HMM as well as confirmed the increase in the non-radiative recombination rate of the different emitters. We also show that the metallic losses of a passive polymer-based HMM can be greatly compensated by a gain material with an emission wavelength close to the epsilon-near-zero region of the HMM. These results demonstrate the unique potential of an active polymer-based hyperbolic metamaterial in loss compensation, quantum applications, and sub-wavelength imaging techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom