Spectral phase sensitivity of frequency resolved optical switching for broadband IR pulse characterization
Author(s) -
Adrien Longa,
Mayank Kumar,
Philippe Lassonde,
Heide Ibrahim,
François Légaré,
Adrien Leblanc
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.451522
Subject(s) - optics , materials science , ultrashort pulse , bandwidth limited pulse , pulse duration , pulse compression , dispersion (optics) , optical path length , laser , physics , telecommunications , radar , computer science
In this work, we demonstrate the sensitivity of the frequency-resolved optical switching (FROSt) technique to detect a small amount of spectral phase shift for the precise characterization of ultrashort laser pulses. We characterized fs pulses centered at 1.75 µm that are spectrally broadened up to 700 nm of bandwidth in a hollow-core fiber and subsequently compressed down to 2.3 optical cycle duration by propagation in the air at atmospheric pressure. By inserting thin fused silica windows of different thicknesses in the beam path, we accurately retrieve group delay dispersion (GDD) variations as small as 10 fs 2 . Such GDD variations correspond to a change of the pulse duration of only 0.2 fs for a Fourier transform limited 2-cycle pulse at 1.75 µm (i.e., 11.8 fs). The capability to measure such tiny temporal variations thus demonstrates that the FROSt technique has sufficient sensitivity to precisely characterize single-cycle pulses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom