Physically-secured high-fidelity free-space optical data transmission through scattering media using dynamic scaling factors
Author(s) -
Yin Xiao,
Lina Zhou,
Zilan Pan,
Yonggui Cao,
Wen Chen
Publication year - 2022
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.448943
Subject(s) - transmission (telecommunications) , optics , computer science , free space optical communication , data transmission , scaling , optical link , optical performance monitoring , optical communication , physics , telecommunications , wavelength division multiplexing , optical fiber , computer network , geometry , mathematics , wavelength
In this paper, we propose a method of physically-secured high-fidelity free-space optical data transmission through scattering media using physically- and dynamically-generated scaling factors. Optical channel characteristics are explored, and scaling factors are physically and dynamically generated to serve as security keys in the developed free-space optical data transmission system. The generated dynamic scaling factors provide a security layer for free-space optical data transmission. To the best of our knowledge, it is the first time to physically and dynamically generate scaling factors in free-space optical data transmission system to realize data encryption. The scaling factors existing in free-space optical data transmission channel are physically and dynamically controlled by using two optical devices, i.e., variable beam attenuator (VBA) and amplitude-only spatial light modulator (SLM). Nonlinear and dynamic variation of scaling factors is realized in different free-space wave propagation environments. It is experimentally demonstrated that high security can be guaranteed in the developed physically-secured high-fidelity free-space optical data transmission system, since one random scaling factor is physically and dynamically generated for the transmission of each signal pixel value. In addition, the proposed physically-secured free-space optical data transmission scheme is robust to noise and scattering, and high-fidelity signals are retrieved at the receiving end. The proposed method could open up a new research perspective for the secured free-space optical data transmission.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom