Towards machine learning for heterogeneous inverse scattering in 3D microscopy
Author(s) -
Zsolt-Alon Wertheimer,
Chen Bar,
Anat Levin
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.447075
Subject(s) - speckle pattern , computer science , scattering , optics , process (computing) , light scattering , inverse scattering problem , artificial intelligence , speckle noise , key (lock) , physics , computer security , operating system
Light propagating through a nonuniform medium scatters as it interacts with particles with different refractive properties such as cells in the tissue. In this work we aim to utilize this scattering process to learn a volumetric reconstruction of scattering parameters, in particular particle densities. We target microscopy applications where coherent speckle effects are an integral part of the imaging process. We argue that the key for successful learning is modeling realistic speckles in the training process. To this end, we build on the development of recent physically accurate speckle simulators. We also explore how to incorporate speckle statistics, such as the memory effect, in the learning framework. Overall, this paper contributes an analysis of multiple aspects of the network design including the learning architecture, the training data and the desired input features. We hope this study will pave the road for future design of learning based imaging systems in this challenging domain.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom