z-logo
open-access-imgOpen Access
Phase error analysis and unwrapping error suppression in phase-sensitive optical time domain reflectometry
Author(s) -
Xin Lu,
Katerina Krebber
Publication year - 2022
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.446517
Subject(s) - reflectometry , offset (computer science) , optics , computer science , phase (matter) , phase unwrapping , observational error , time domain , phase noise , absolute phase , algorithm , interferometry , physics , computer vision , mathematics , statistics , quantum mechanics , programming language
Phase-sensitive optical time domain reflectometry becomes an effective tool to realize distributed sensing, and the optical phase of the received light is usually used to quantify the strain for both dynamic and static measurement. The analysis on the overall phase error has been improved by considering the proportionality of the detection noise to the local optical power. The estimation accuracy is greatly improved by using the proposed theory, the probability density of the estimation accuracy over 99% is > 0.6, ∼39 times larger than the previously reported method. The phase unwrapping may malfunction due to the noisy signal, causing large phase errors. Point break detection algorithms are used to locate the incorrect phase unwrapping points, so the temporal evolution of the phase retrieved at each position can be divided into several sections with different offset. The phase unwrapping error is then suppressed by removing the offset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom