z-logo
open-access-imgOpen Access
Magnetic field sensing based on multi-order resonances of atomic spins
Author(s) -
Hongying Yang,
Qian Wang,
Binbin Zhao,
Lin Li,
Yueyang Zhai,
Bangcheng Han,
Feng Tang
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.443679
Subject(s) - magnetometer , magnetic field , spins , physics , sensitivity (control systems) , resonance (particle physics) , optics , field (mathematics) , dynamic range , nuclear magnetic resonance , materials science , atomic physics , condensed matter physics , electronic engineering , mathematics , quantum mechanics , pure mathematics , engineering
Broad-dynamic-range magnetometers are demanded in practical applications and fundamental research. We experimentally demonstrate a parametrically modulated atomic magnetometer with a large dynamic range by taking advantage of the high-order resonance effects. With the increase of the strength of the modulation field, both low-order and high-order resonances are well resolved and used to measure the DC or AC magnetic fields. The experimentally demonstrated sensitivity of the magnetometer based on the zeroth-order resonance is 1.5 pT/Hz, and those based on the high-order resonances are below 3 pT/Hz, making the measurement of high magnetic fields feasible under an open-loop operation. Moreover, we also demonstrated the measurement of high-frequency large AC magnetic field with the high-order resonances, and the sensitivity for the AC magnetic field based on the first-order resonance is 7 pT/Hz. Our scheme provides a new path for the development of broad-dynamic-range and miniaturized atomic magnetometers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom