
In-plane directionality control of strongly localized resonant modes of light in disordered arrays of dielectric scatterers
Author(s) -
Anisul Haque,
Tashfiq Ahmed,
Zunaid Baten
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.443103
Subject(s) - directionality , randomness , dielectric , optics , scattering , physics , anderson localization , light scattering , laser , plane wave , optoelectronics , condensed matter physics , statistics , genetics , mathematics , biology
In this work we propose and analyze techniques of in-plane directionality control of strongly localized resonant modes of light in random arrays of dielectric scatterers. Based on reported diameters and areal densities of epitaxially grown self-organized nanowires, two-dimensional (2D) arrays of dielectric scatterers have been analyzed where randomness is gradually increased along a preferred direction of directionality enhancement. In view of the multiple-scattering mediated wave dynamics and directionality enhancement of light in such arrays, a more conveniently realizable, practical structure is proposed where a 2D periodic array is juxtaposed with a uniform, random scattering medium. Far- and near-field emission characteristics of such arrays show that in spite of the utter lack of periodicity in the disordered regime of the structure, directionality of the high-Q resonant modes is modified such that on average more than 70% of the output power is emitted along the pre-defined direction of preference. Such directionality enhancement and strong localization are nonexistent when the 2D periodic array is replaced with a one-dimensional Bragg reflector, thereby confirming the governing role of in-plane multiple scattering in the process. The techniques presented herein offer novel means of realizing not only directionality tunable edge-emitting random lasers but also numerous other disordered media based photonic structures and systems with higher degrees of control and tunability.