In-plane directionality control of strongly localized resonant modes of light in disordered arrays of dielectric scatterers
Author(s) -
A. Haque,
Tashfiq Ahmed,
Md Zunaid Baten
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.443103
Subject(s) - directionality , randomness , dielectric , optics , scattering , physics , anderson localization , light scattering , laser , plane wave , optoelectronics , condensed matter physics , statistics , genetics , mathematics , biology
In this work we propose and analyze techniques of in-plane directionality control of strongly localized resonant modes of light in random arrays of dielectric scatterers. Based on reported diameters and areal densities of epitaxially grown self-organized nanowires, two-dimensional (2D) arrays of dielectric scatterers have been analyzed where randomness is gradually increased along a preferred direction of directionality enhancement. In view of the multiple-scattering mediated wave dynamics and directionality enhancement of light in such arrays, a more conveniently realizable, practical structure is proposed where a 2D periodic array is juxtaposed with a uniform, random scattering medium. Far- and near-field emission characteristics of such arrays show that in spite of the utter lack of periodicity in the disordered regime of the structure, directionality of the high-Q resonant modes is modified such that on average more than 70% of the output power is emitted along the pre-defined direction of preference. Such directionality enhancement and strong localization are nonexistent when the 2D periodic array is replaced with a one-dimensional Bragg reflector, thereby confirming the governing role of in-plane multiple scattering in the process. The techniques presented herein offer novel means of realizing not only directionality tunable edge-emitting random lasers but also numerous other disordered media based photonic structures and systems with higher degrees of control and tunability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom