z-logo
open-access-imgOpen Access
Improved optical camera communication systems using a freeform lens
Author(s) -
Ziwei Liu,
Ying-Hsi Lin,
Yanbing Yang,
Rengmao Wu,
Lei Zhang,
Liangyin Chen,
Die Wu,
Jun She
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.440342
Subject(s) - optics , lens (geology) , demodulation , frame rate , computer science , visible light communication , signal (programming language) , transmission (telecommunications) , light intensity , bit error rate , modulation (music) , light emitting diode , physics , acoustics , telecommunications , channel (broadcasting) , programming language
Optical camera communication (OCC) systems, which utilize image sensors embedded in commercial-off-the-shelf devices to detect time and spatial variations in light intensity for enabling data communications, have stirred up researchers' interest. Compared to a direct OCC system whose maximum data rate is strongly determined by the LED source size, a reflected OCC system can break that limitation since the camera captures the light rays reflecting off an observation plane (e.g., a wall) instead of those light rays directly emanated from the light source. However, the low signal-to-noise ratio caused by the non-uniform irradiance distribution produced by LED luminaire on the observation plane in current reflected OCC systems cannot be avoided, hence low complexity and accurate demodulation are hard to achieve. In this paper, we present a FreeOCC system, which employs a dedicatedly tailored freeform lens to precisely control the propagation of modulated light. A desired uniform rectangular illumination is produced on the observation plane by the freeform lens, yielding a uniform grayscale distribution within the received frame captured by the camera in the proposed FreeOCC system. Then, the received signal can be easily demodulated with high accuracy by a simple thresholding scheme. A prototype of the FreeOCC system demonstrates the high performance of the proposed system, and two pulse amplitude modulation schemes (4-order and 8-order) are performed. By using the freeform lens, the packet reception rate is increased by 35% and 32%, respectively; the bit error rate is decreased by 72% and 59%, respectively, at a transmission frequency of 5 kHz. The results clearly show that the FreeOCC system outperforms the common reflected OCC system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here