
Low jitter microwave pulse train generation based on an optoelectronic oscillator
Author(s) -
Ziwen He,
Lingzhi Li,
Jianping Yao,
Jianping Yao
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.440257
Subject(s) - jitter , phase noise , optics , physics , frequency comb , ultrashort pulse , pulse wave , comb generator , materials science , laser , telecommunications , computer science
We demonstrate an approach to ultra-short pulse train generation with a low time jitter based on pulse compression of a frequency comb generated by a dual-loop optoelectronic oscillator (OEO). The proposed dual-loop OEO consists of two feedback loops, with one having a long loop length and the other a short loop length. In the long loop, a phase modulator (PM) cascaded with a Mach-Zehnder modulator (MZM) are employed, and in the short loop, only the MZM is included. Due to the Vernier effect, the use of the dual-loop structure can facilitate mode selection to generate a single-frequency microwave carrier with multiple optical sidebands corresponding to an optical comb. By adjusting the phase relationship between the optical sidebands using a dispersion compensating fiber (DCF), a stable optical pulse train is generated. Thanks to the low phase noise nature of an OEO, the generated pulse train has a low time jitter. The proposed approach is evaluated experimentally. A pulse train with a repetition frequency of 2.023 GHz and a pulse width of 40 ps is generated. The single-sideband (SSB) phase noise of the carrier frequency generated by the OEO is measured to be -118 dBc/Hz at a 10-kHz offset frequency, corresponding to a time jitter of the pulse train of 391.2 fs. The phase noise can be further reduced if an active cavity stabilization mechanism is adopted, enabling further reduction in the time jitter to the order of tens of femtoseconds.