z-logo
open-access-imgOpen Access
Joint intra and inter-channel nonlinearity compensation based on interpretable neural network for long-haul coherent systems
Author(s) -
Du Tang,
Zhen Wu,
Zhongliang Sun,
Xizi Tang,
Yaojun Qiao
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.439362
Subject(s) - computer science , crosstalk , wavelength division multiplexing , nonlinear system , channel (broadcasting) , polarization mode dispersion , optics , joint (building) , telecommunications , physics , optical fiber , engineering , wavelength , architectural engineering , quantum mechanics
A novel joint intra and inter-channel nonlinearity compensation method is proposed, which is based on interpretable neural network (NN). For the first time, conventional cascaded digital back-propagation (DBP) and nonlinear polarization crosstalk canceller (NPCC) are deep unfolded into an NN architecture together based on their physical meanings. Verified by extensive simulations of 7-channel 20-GBaud DP-16QAM 3200-km coherent optical transmission, deep-unfolded DBP-NPCC (DU-DBP-NPCC) achieves 1 dB and 0.36 dB Q factor improvement at the launch power of -1 dBm/channel compared with chromatic dispersion compensation (CDC) and cascaded DBP-NPCC, respectively. Under the bit error rate threshold of 2 × 10 -2 , DU-DBP-NPCC extends the maximum transmission reach by 28% (700 km) compared with CDC. Besides, 3 different training schemes of DU-DBP-NPCC are investigated, implying the effective signal-to-noise ratio is not the proper evaluation metric of nonlinearity compensation performance for DU-DBP-NPCC. Moreover, DU-DBP-NPCC costs 26% lower computational complexity compared with DBP-NPCC, providing a better choice for joint intra and inter-channel nonlinearity compensation in long-haul coherent systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom