z-logo
open-access-imgOpen Access
Complete self-calibration compact binary magneto-optic rotator based Mueller matrix polarimetry
Author(s) -
Peidong Hua,
Zhenyang Ding,
Chenhuan Wang,
Kun Liu,
Junfeng Jiang,
Yaozu Yin,
X. Steve Yao,
Tiegen Liu
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.439062
Subject(s) - mueller calculus , polarimetry , optics , calibration , polarization (electrochemistry) , polarimeter , physics , binary number , mathematics , scattering , chemistry , arithmetic , quantum mechanics
Magneto-optic (MO) based Mueller matrix polarimetry (MMP) has several advantages of compact size, no-mechanical movement and high speed. Inaccuracies of components in the polarization state generator (PSG) optical parameters will influence the measurement accuracy of MMP. In this paper, we present a PSG self-calibration method in the compact MMP based on binary MO polarization rotators. Since PSG can generate enough numbers of non-degenerate polarization states, the optical parameters in PSG and the Mueller matrix of the sample can totally be numerically solved, which realizes a self-calibration in the PSG. Combining the previous self-calibration method in polarization state analyzer (PSA), we realize a complete self-calibration compact MO based MMP. Based on the numerical simulation results, the errors of measured phase retardance and optical axis of the sample decrease two to three orders of magnitude after applying the PSG self-calibration method. In experimental results of a variable retarder as a sample, the Euclidean distance of retardance between the measurement and reference curves comparing PSG self-calibration with no PSG self-calibration can be reduced from 0.035 rad to 0.033 rad and the Euclidean distance of optical axis can be reduced from 3.39° to 1.51°. Compared with the experimental results, the numerical simulation results more accurately verify the performance of the presented PSG self-calibration method without being influenced by other errors because the Mueller matrix of the sample is known and the error source only comes from these components in PSG.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here