
Single-polarization single-mode hollow-core photonic-bandgap fiber with thin slab waveguide
Author(s) -
Yunhao Zhu,
Ningfang Song,
Fuyu Gao,
Xiaobin Xu
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.438563
Subject(s) - optics , extinction ratio , materials science , bend radius , single mode optical fiber , polarization (electrochemistry) , photonic crystal fiber , resonator , insertion loss , optoelectronics , optical fiber , wavelength , physics , bending , chemistry , composite material
A novel single-polarization single-mode hollow-core photonic bandgap fiber with thin slab waveguide (TSW) was designed and simulated. Single-polarization guidance is achieved by the high loss of a polarized fundamental mode (FM) induced by mode coupling with a higher-order TE/TM mode of TSW and low loss of another polarized FM. We achieve a polarization loss ratio ∼ 46.9 dB, birefringence Δn ∼ 2.4 × 10 -4 , loss ∼ 35.9 dB/km and minimum higher-order mode extinction ratio > 15 dB. Moreover, the performance could be maintained when the guidance wavelength λ = 1.44 ∼ 1.56 µm and bending radius rc > 9 mm. The proposed model will be suitable for application as resonator sensing paths of miniaturized resonator fiber optic gyroscopes, high-performance interferometers, fiber lasers, frequency metrology, quantum communications, and laser-based gas sensing, etc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom