
Sub-sampled modal decomposition in few-mode fibers
Author(s) -
Kyu-Hong Choi,
Changsu Jun
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.438533
Subject(s) - modal , pixel , sampling (signal processing) , computer science , algorithm , beam (structure) , optics , decomposition , mode (computer interface) , artificial intelligence , computer vision , physics , materials science , ecology , filter (signal processing) , polymer chemistry , biology , operating system
Retrieving modal contents from a multimode beam profile can provide the most detailed information of a beam. Numerical modal decomposition is a method of retrieving modal contents, and it has gained significant attention owing to its simplicity. It only requires a measured beam profile and an algorithm. Therefore, a complicated setup is not necessary. In this study, we conceived that the modal decomposition can be notably improved by data-efficiently sub-sampling the beam image instead of using full pixels of a beam profiler. By investigating the window size, the number of pixels, and algorithm for sub-sampling, the calculation time for the algorithm was faster by approximately 100 times than the case of full pixel modal decomposition. Experiments with 3-mode and 6-mode beams, which originally span 201×201 and 251×251 pixels, respectively, confirmed the remarkable improvement of calculation speed while maintaining the error function at a level of ∼10 -3 . This first demonstration of sub-sampling for modal decomposition is based on the modified stochastic parallel gradient descent algorithm. However, it can be applied to other numerical or artificial intelligence algorithms and can enhance real-time analysis or active control of beam characteristics.