Machine learning-based leaky momentum prediction of plasmonic random nanosubstrate
Author(s) -
Jooyoung Kim,
Hongki Lee,
Seongmin Im,
Seung Ah Lee,
Donghyun Kim,
KarAnn Toh
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.437939
Subject(s) - plasmon , surface plasmon polariton , optics , leakage (economics) , computer science , artificial neural network , radiation , surface plasmon , visualization , dielectric , artificial intelligence , materials science , optoelectronics , physics , economics , macroeconomics
In this work, we explore the use of machine learning for constructing the leakage radiation characteristics of the bright-field images of nanoislands from surface plasmon polariton based on the plasmonic random nanosubstrate. The leakage radiation refers to a leaky wave of surface plasmon polariton (SPP) modes through a dielectric substrate which has drawn interest due to its possibility of direct visualization and analysis of SPP propagation. A fast-learning two-layer neural network has been deployed to learn and predict the relationship between the leakage radiation characteristics and the bright-field images of nanoislands utilizing a limited number of training samples. The proposed learning framework is expected to significantly simplify the process of leaky radiation image construction without the need of sophisticated equipment. Moreover, a wide range of application extensions can be anticipated for the proposed image-to-image prediction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom