z-logo
open-access-imgOpen Access
Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes
Author(s) -
Hugo Kerdoncuff,
Jesper B. Christensen,
Mikael Lassen
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.436325
Subject(s) - squeezed coherent state , optics , coherence (philosophical gambling strategy) , quantum optics , physics , quantum metrology , spontaneous parametric down conversion , sum frequency generation , nonlinear optics , vacuum state , quantum , optoelectronics , coherent states , quantum information , laser , quantum network , quantum entanglement , quantum mechanics
Quantum frequency conversion, the process of shifting the frequency of an optical quantum state while preserving quantum coherence, can be used to produce non-classical light at otherwise unapproachable wavelengths. We present experimental results based on highly efficient sum-frequency generation (SFG) between a vacuum squeezed state at 1064 nm and a tunable pump source at 850 nm ± 50 nm for the generation of bright squeezed light at 472 nm ± 4 nm, currently limited by the phase-matching of the used nonlinear crystal. We demonstrate that the SFG process conserves part of the quantum coherence as a 4.2(±0.2) dB 1064 nm vacuum squeezed state is converted to a 1.6(±0.2) dB tunable bright blue squeezed state. We furthermore demonstrate simultaneous frequency- and spatial-mode conversion of the 1064-nm vacuum squeezed state, and measure 1.1(±0.2) dB and 0.4(±0.2) dB of squeezing in the TEM 01 and TEM 02 modes, respectively. With further development, we foresee that the source may find use within fields such as sensing, metrology, spectroscopy, and imaging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here