
Dynamically tunable coherent perfect absorption in topological insulators at oblique incidence
Author(s) -
Guilian Lan,
Wei Wei,
Peng Luo,
Jun Yi,
Zhengguo Shang,
Ting Xu
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.435440
Subject(s) - topological insulator , optics , photonics , modulation (music) , absorption (acoustics) , physics , optoelectronics , phase modulation , materials science , phase noise , quantum mechanics , acoustics
The effective engineering of light absorption has been the focus of intensive research to realize the novel optoelectronic devices based on a topological insulator, a unique topologically protected surface Dirac-state quantum material with excellent prospects in electronics and photonics. Here, we theoretically proposed a versatile platform for manipulating the light-matter interaction employing the dynamically tunable coherent perfect absorption (CPA) in the topological insulator Bi 1.5 Sb 0.5 Te 1.8 Se 1.2 (BSTS). By simply varying the phase difference between two coherent counter-propagating beams, the BSTS-based CPA device can be continuously switched from the high transparency state to the strong absorption state, leading to the modulation of absorption ranging from 0.2% to 99.998%. Under the illumination of TE-polarized wave, the high absorption (>90%) can be implemented within a broad range from 0.47 to 1.51 μm through a proper incident angle alteration. In addition, the quasi-CPA wavelength can be flexibly selected by tuning the bulk thickness of BSTS film while maintaining high modulation depth of 10 4 . Such BSTS-based CPA device with flexible tunability, wide absorption modulation range, and high modulation depth is expected to be utilized in a wide range of potential applications such as in next-generation coherent detectors, coherent modulators, all-optical switches, and signal processors.