z-logo
open-access-imgOpen Access
Computed tomography for distributed Brillouin sensing
Author(s) -
Youhei Okawa,
Kazuo Hotate
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.435320
Subject(s) - brillouin zone , optics , brillouin scattering , radon transform , optical fiber , materials science , physics , computer science , artificial intelligence
A method to reconstruct the spatial distribution of Brillouin gain spectrum from its Radon transform is proposed, which is a type of optical computed tomography. To verify the concept, an experiment was performed on distributed Brillouin fiber sensing, which succeeded in detecting a 55-cm strain section along a 10-m fiber. The experimental system to obtain the Radon transform of the Brillouin gain spectrum is based on a Brillouin optical correlation-domain analysis with a linear frequency-modulated continuous-wave laser. Combining distributed fiber sensing with computed tomography, this method can realize a high signal-to-noise ratio Brillouin sensing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom