z-logo
open-access-imgOpen Access
Demonstration of a 50G-PON with a 45-dB power budget using an IQ-interleaved coherent detection scheme
Author(s) -
Zhengxuan Li,
Fan Yin,
Xingang Huang,
Zhuang Ma,
Yingxiong Song,
Lilin Yi
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.435034
Subject(s) - local oscillator , heterodyne detection , bandwidth (computing) , optics , transmitter , computer science , power budget , electronic engineering , sensitivity (control systems) , pulse shaping , physics , telecommunications , phase noise , power (physics) , laser , channel (broadcasting) , engineering , electric power system , quantum mechanics
The application of traditional coherent detection technology to optical access networks has been undermined due to its high complexity and high cost. In this paper, we propose a novel IQ-interleaved detection method which uses the preset frequency offset of the lasers at the transmitter and receiver to obtain the in-phase and quadrature components of the received signal. It keeps the simple structure of heterodyne detection and avoids the down-conversion process. Without Nyquist pulse shaping, the received signal bandwidth of the proposed scheme is theoretically 0.5B smaller than that of heterodyne detection for signal with a symbol rate of B. The 50-Gb/s NRZ transmission experiment proves that by using the proposed scheme, the receiving sensitivity and the frequency drift tolerance can be improved by ∼1 dB and 1 GHz compared with heterodyne detection under strong bandwidth limitation. Without pulse shaping, the receiving sensitivity, frequency drift tolerance (1-dB sensitivity penalty) and link power budget for 20-km fiber transmission are -31.8 dBm, 11 GHz and 43.5 dB, respectively. A higher power budget of 45 dB can be achieved when Nyquist pulse shaping is applied. The proposed scheme provides a low-complexity potential solution for a next-generation coherent PON.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom