z-logo
open-access-imgOpen Access
Formation mechanism of nanosecond-laser-induced microstructures on amorphous silicon film surfaces
Author(s) -
Yingming Ren,
Zhiyu Zhang
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.434313
Subject(s) - materials science , microstructure , nanosecond , laser , silicon , optics , amorphous solid , irradiation , optoelectronics , laser power scaling , amorphous silicon , surface roughness , crystalline silicon , composite material , chemistry , crystallography , physics , nuclear physics
Laser-induced microstructures have attracted significant research interest owing to their wide application potential for anti-reflective surfaces and optoelectronic devices. To elucidate the characteristics of laser-patterned microstructures, nanosecond-laser-induced micro-protrusions on amorphous silicon film surfaces were investigated via single-and multi-line irradiation experiments. For the former, the results reveal that the number of periodic micro-protrusions depends on the peak power intensity. In addition, the height and the base diameter of the micro-protrusions can be tailored by adjusting the peak power intensity and scanning distance of the laser, while increasing the peak power intensity also increases surface roughness. X-ray spectroscopy confirmed that the microstructures were mainly composed of silicon. The relationship between the formation mechanism and the size of the micro-protrusions is also discussed, with the results of this study providing valuable insights into the laser-induced microstructure formation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom