z-logo
open-access-imgOpen Access
Polarization measurements of deep- to extreme-ultraviolet high harmonics generated in liquid flat sheets
Author(s) -
Vít Svoboda,
Zhong Yin,
Tran Trung Luu,
Hans Jakob Wörner
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.433849
Subject(s) - extreme ultraviolet , attosecond , optics , high harmonic generation , harmonics , polarization (electrochemistry) , laser , physics , femtosecond , ultraviolet , radiation , materials science , optoelectronics , ultrashort pulse , voltage , chemistry , quantum mechanics
Laboratory-based coherent light sources enable a wide range of applications to investigate dynamical processes in matter. High-harmonic generation (HHG) from liquid samples is a recently discovered coherent source of extreme-ultraviolet (XUV) radiation potentially capable of achieving few-femtosecond to attosecond pulse durations. However, the polarization state of this light source has so far remained unknown. In this work, we characterize the degree of polarization of both low- and high-order harmonics generated from liquid samples using linearly polarized 400 nm and 800 nm drivers. We find a remarkably high degree of linear polarization of harmonics ranging all the way from the deep-ultraviolet (160 nm) across the vacuum-ultraviolet into the XUV domain (73 nm). These results establish high-harmonic generation in liquids as a promising alternative to conventional sources of XUV radiation, combining the benefits of high target densities comparable to solids with a continuous sample renewal that avoids the limitations imposed by laser-induced damage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom