
Optical super-resonance in a customized P T-symmetric system of hybrid interaction
Author(s) -
Jiaqi Yuan,
Bo Zhao,
Lin-Shan Sun,
Liting Wu,
Tianjing Guo,
Ming Kang,
Jing Chen
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.432105
Subject(s) - physics , coupling (piping) , resonance (particle physics) , spectral line , topology (electrical circuits) , atomic physics , quantum mechanics , materials science , combinatorics , mathematics , metallurgy
We investigate the optical resonances in coupled meta-atoms with hybrid interaction pathways. One interaction pathway is the directly near-field coupling between the two meta-atoms. The other interaction pathway is via the continuum in a waveguide functioned as a common bus connecting them. We show that by properly introducing gain or loss into the meta-atoms, the hybrid optical system becomes parity-time ( P T ) symmetric, in which the effective coupling rate can be customized by manipulating the length of the waveguide. At the exact phase of the customized P T symmetry, the coupled meta-atoms support discrete super-resonant modes that can be observed from the transmission spectra as extremely sharp peaks. At an exception point where the eigenmodes coalesce, albeit the transmission curve is flat, a high-Q factor of the localized field in the meta-atoms can be obtained. Similarities of the super-resonance with the bound states in the continuum (BICs) are discussed. This investigation promotes our understanding about the ways in realizing high-Q optical resonance especially by manipulating the distributions of loss and gain via the concepts of P T and BICs. Many attractive applications are expected.