
Sm-Net OCT: a deep-learning-based speckle-modulating optical coherence tomography
Author(s) -
Guangming Ni,
Ying Chen,
Renxiong Wu,
Xiaoshan Wang,
Ming Zeng,
Yong Liu
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.431475
Subject(s) - speckle pattern , optical coherence tomography , speckle noise , optics , computer science , image quality , artificial intelligence , coherence (philosophical gambling strategy) , speckle imaging , physics , image (mathematics) , quantum mechanics
Speckle imposes obvious limitations on resolving capabilities of optical coherence tomography (OCT), while speckle-modulating OCT can efficiently reduce speckle arbitrarily. However, speckle-modulating OCT seriously reduces the imaging sensitivity and temporal resolution of the OCT system when reducing speckle. Here, we proposed a deep-learning-based speckle-modulating OCT, termed Sm-Net OCT, by deeply integrating conventional OCT setup and generative adversarial network trained with a customized large speckle-modulating OCT dataset containing massive speckle patterns. The customized large speckle-modulating OCT dataset was obtained from the aforementioned conventional OCT setup rebuilt into a speckle-modulating OCT and performed imaging using different scanning parameters. Experimental results demonstrated that the proposed Sm-Net OCT can effectively obtain high-quality OCT images without the electronic noise and speckle, and conquer the limitations of reducing the imaging sensitivity and temporal resolution which conventional speckle-modulating OCT has. The proposed Sm-Net OCT can significantly improve the adaptability and practicality capabilities of OCT imaging, and expand its application fields.