z-logo
open-access-imgOpen Access
Photonics-assisted joint radar and communication system based on an optoelectronic oscillator
Author(s) -
Zhujun Xue,
Shangyuan Li,
Xiaoxiao Xue,
Xiaoping Zheng,
Bingkun Zhou
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.430910
Subject(s) - computer science , radar , bandwidth (computing) , photonics , local oscillator , electronic engineering , communications system , optics , telecommunications , physics , engineering , radio frequency
This paper reports a photonics-assisted joint radar and communication system for intelligent transportation based on an optoelectronic oscillator (OEO). By manipulating the optical multi-dimensional processing module inserted in the OEO loop, two phase-orthogonal integrated signals are generated with low phase noise and high frequency, as the communication data loaded on the overall polarity of radar pulses. At the receiver, single-channel matched filtering and two-channel IQ data fusion are utilized to retrieve the communication data and the range profile, without any performance deterioration of either. In this way, the contradiction between the performance of two functions existing in the previous scheme is solved, and the integrated performance can be further optimized as bandwidth increases. A proof-of-concept experiment with 2 GHz bandwidth at 24 GHz, which is the operating frequency of short-range automotive radar, is carried out to verify that the proposed system can meet the requirement of the intelligent vehicles in the short-range scene. A communication capacity of 335.6 Mbps, a range profile with a resolution of 0.075 m, and a peak-to-sidelobe ratio (PSLR) of 20 dB is demonstrated under the experimental condition. The error vector magnitude (EVM) curve and constellation diagrams versus received power are measured, where the EVM is -8 and -14.5 dB corresponding to a power of -14 and 6 dBm, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here