z-logo
open-access-imgOpen Access
Near-infrared sensitivity improvement by plasmonic diffraction for a silicon image sensor with deep trench isolation filled with highly reflective metal
Author(s) -
Atsushi Ono,
Kazuma Hashimoto,
Nobukazu Teranishi
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.428314
Subject(s) - materials science , optics , silicon , diffraction , plasmon , optoelectronics , grating , surface plasmon polariton , diffraction grating , shallow trench isolation , diffraction efficiency , surface plasmon , trench , layer (electronics) , nanotechnology , physics
We propose a plasmonic diffraction structure combined with deep trench isolation (DTI) filled with highly reflective metal to enhance the near-infrared (NIR) sensitivity of image sensors. The plasmonic diffraction structure has a silver grating on the light-illuminated surface of a typical silicon backside-illuminated CMOS image sensor. The structural parameters of the silver grating were investigated through simulations, and the mechanism of the NIR sensitivity enhancement was clarified. Under the quasi-resonant conditions of surface plasmon polaritons, incident NIR light effectively diffracted as a propagating light to the sensor silicon layer. The diffracted light travelled back and forth between the DTIs. The effective propagation length in silicon was extended to six times by silver-filled DTI, resulting in approximately five times improvement of the 3-µm-thick silicon absorption at a wavelength of 940 nm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom