Open Access
Metasurface-assisted broadband optical absorption in ultrathin perovskite films
Author(s) -
Jie He,
Yi Zhou,
Chengyao Li,
Bo Xiong,
Jian Hao,
RuWen Peng,
Mu Wang
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.427028
Subject(s) - materials science , absorption (acoustics) , optics , optoelectronics , thin film , plasmon , photoelectric effect , polarization (electrochemistry) , photodetector , nanotechnology , physics , chemistry
Ultrathin hybrid organic-inorganic perovskite (HOIP) films have significant potential for use in integrated high-performance photoelectric devices. However, the relatively low optical absorption capabilities of thinner films, particularly in the long-wavelength region, pose a significant challenge to the further improvement of photoelectrical conversion in ultrathin HOIP films. To address this problem, we propose a combining of ultrathin HOIP film with plasmonic metasurface to enhance the absorption of the film effectively. The metasurface excites localized surface plasmon resonances and deflects the reflected light within the HOIP film, resulting in an obvious enhancement of film absorption. Finite-difference time-domain simulation results reveal that the far-field intensities, deflection angles, and electric field distributions can be effectively varied by using metasurfaces with different arrangements. Examination of the reflection and absorption spectra reveals that embedding a specifically designed metasurface into the HOIP film produces an obvious enhancement in broadband optical absorption compared with pure HOIP films. We further demonstrate that this broadband absorption promotion mechanism can be effective at a wide range of HOIP film thicknesses. Comparison of the absorption spectra at various incidence angles of ultrathin HOIP films with and without underlying metasurfaces indicates that the addition of a metasurface can effectively promote absorption under wide-angle incident light illumination. Moreover, by extending the metasurface structure to a two-dimensional case, absorption enhancements insensitive to the incident polarization states have also been demonstrated. This proposed metasurface-assisted absorption enhancement method could be applied in designing novel high-performance thin-film solar cells and photodetectors.