z-logo
open-access-imgOpen Access
Surface plasmon polaritons of higher-order mode and standing waves in metallic nanowires
Author(s) -
Jiunn-Woei Liaw,
Szu-Yao Mao,
Jia-Yun Luo,
Yun-Cheng Ku,
MaoKuen Kuo
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.425958
Subject(s) - surface plasmon polariton , physics , plasmon , surface plasmon , optics , dipole , condensed matter physics , quantum mechanics
The surface plasmon polaritons (SPPs) of higher-order mode propagating along a plasmonic nanowire (NW) or an elongated nanorod (NR) are studied theoretically. The dispersion relations of SPPs in NWs of different radii, obtained from a transcendental equation, show that the propagation lengths of SPPs of mode 1 and 2 at a specific frequency are longer than that of mode 0. For the higher-order mode, the spatial phase of the longitudinal component of electric field at a cross section of a NW exhibits the topological singularity, which indicates the optical vortex. Of importance, the streamlines of Poynting vector of these SPPs exhibit a helical winding along NW, and the azimuthal component of orbital momentum density exists in the nearfield of NW to produce a longitudinal orbital angular momentum (OAM). Two types of standing wave of counter-propagating SPPs of mode 1 and 2 are also studied; they perform as a string of beads or twisted donut depending on whether the handedness of two opposite-direction propagating SPPs is same or opposite. In addition, a SPP of mode 1 propagating along an elongated NR can be generated by means of an end-fire excitation of crossed electric bi-dipole with 90° phase difference. If the criterion of a resonator for a mode-1 standing wave (string of beads) is met, the configuration of a plasmonic NR associated with a pair of bi-dipoles with a phase delay (0° or 180°) at the two ends can be applied as a high-efficiency nanoantenna of transmission. Our results may pave a way to the further study of SPPs of higher-order mode carrying OAM along plasmonic waveguides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here