z-logo
open-access-imgOpen Access
Photonic reservoir computer using speckle in multimode waveguide ring resonators
Author(s) -
Matthew N. Ashner,
Uttam Paudel,
Marta Luengo-Kovac,
Jacob Pilawa,
George C. Valley
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.425062
Subject(s) - multi mode optical fiber , optics , resonator , waveguide , speckle pattern , physics , photonics , nonlinear system , optical fiber , quantum mechanics
Photonic reservoir computers (RC) come in single mode ring and multimode array geometries. We propose and simulate a photonic RC architecture using speckle in a multimode waveguide ring resonator that requires neither the ultra-high-speed analog-digital conversion nor the spatial light modulator used in other designs. We show that the equations for propagation around a multimode (MM) ring resonator along with an optical nonlinearity, and optical feedback can be cast exactly in the standard RC form with speckle mixing performing the pseudo-random matrix multiplications. The hyperparameters are the outcoupling efficiency, the nonlinearity saturation intensity, the input bias, and the waveguide properties. In particular, the number of waveguide modes is a measure of the number of effective neurons in the RC. Simulations show a ring using a strongly guiding 50-µm planar waveguide gives 206 effective neurons and excellent predictions of Mackey-Glass waveforms for a broad range of the hyperparameters, while a weakly guiding MM 200-µm diameter fiber gives 4,238 effective neurons and excellent predictions of chaotic solutions of the Kuramoto-Sivashinsky equation. We discuss physical realizations for implementing the system with a chip-scale device or with discrete components and a MM optical fiber.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom