z-logo
open-access-imgOpen Access
Numerical modeling of a hybrid hollow-core fiber for enhanced mid-infrared guidance
Author(s) -
Juliano G. Hayashi,
Seyed Mohammad Abokhamis Mousavi,
Andrea Ventura,
Francesco Poletti
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.423257
Subject(s) - materials science , cladding (metalworking) , optics , photonic crystal fiber , plastic optical fiber , core (optical fiber) , infrared , plastic clad silica fiber , fiber , optical fiber , mode volume , optoelectronics , wavelength , fiber optic sensor , physics , composite material
We propose a novel design of hollow-core fiber for enhanced light guidance in the mid-infrared. The structure combines an arrangement of non-touching antiresonant elements in the air core with a multilayer glass/polymer structure in the fiber's cladding. Through numerical modeling, we demonstrate that the combination of antiresonant/inhibited-coupling and photonic bandgap guidance mechanisms can decrease the optical loss of a tubular antiresonant fiber by more than one order of magnitude. More specifically, our simulations demonstrate losses of the HE 11 mode in the few dB/km level, which can be tuned through mid-infrared wavelengths (5 µm-10.6 µm) by carefully optimizing the structural parameters of both structures. We also show that the hybrid hollow-core fiber design is more robust to bend-induced loss than an equivalent tubular antiresonant fiber or a Bragg/OmniGuide fiber. As a result, if successfully fabricated, the hybrid hollow-core fiber will offer low-loss, high beam-quality, effectively single-mode operation, and low bending losses, potentially solving many of the problems that affect all known mid-infrared fiber types.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom