z-logo
open-access-imgOpen Access
Bi-functional tunable reflector/high-Q absorber design using VO2 assisted graphene-coated cylinder array
Author(s) -
Shiva Hayati Raad,
Zahra Atlasbaf
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.423129
Subject(s) - materials science , figure of merit , optics , refractive index , graphene , plasmon , optoelectronics , fano resonance , distributed bragg reflector , metamaterial , reflection coefficient , grating , reflector (photography) , nanotechnology , physics , wavelength , light source
In this paper, a bi-functional tunable reflector/absorber device using an assembly of graphene-coated cylindrical wires, backed by a thermally controlled phase change material, is proposed. The reflection coefficient of the graphene-coated wire-grating manifests multiple resonances, originating from the hybridized excitation of localized surface plasmons in the graphene shells. The first plasmonic resonance (with the order of two), in the free-standing configuration, shows tunable near-perfect reflection while the second plasmonic resonance (with the order of three), in the reflector-backed array, exhibits near-perfect absorption. Because of the metal-insulator transition in the phase change material, it is feasible to switch between these two functionalities using a VO 2 back layer. Moreover, the high-quality factor of the absorption band (Q ∼ 128.86) is due to its Fano line shape, leading to a narrow bandwidth. Thus, the absorbing mode can be possibly used for refractive index sensing with the sensitivity of S ∼ 9000 nm/RIU (refractive index unit) and figure of merit of FOM ∼ 104 RIU -1 . In the proposed structure, different optical, material, and geometrical parameters affect the optical response of the operating bands, offering a flexible design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom