
Multifunctional ultrathin reflective metasurface via polarization-decoupled phase for arbitrary circularly or elliptically polarized waves
Author(s) -
Xiaoyuan He,
Li Deng,
Yang Yang,
Botao Feng
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.422664
Subject(s) - elliptical polarization , optics , physics , polarization (electrochemistry) , circular polarization , waveplate , orthogonal polarization spectral imaging , microwave , linear polarization , microstrip , laser , chemistry , quantum mechanics
Metasurface offers a promising platform in the design of multifunctional devices owing to its unique ability for EMWs manipulation. However, wave-manipulation capabilities for metasurfaces face challenges in manipulating orthogonal EMWs with arbitrary circularly or elliptically polarized EMWs in the microwave region. Herein, single-layer reflective metasurfaces are proposed for independent manipulation of an arbitrary set of orthogonal circularly or elliptically polarized EMWs via polarization-decoupled phase. Taking advantage of single-layer anisotropic meta-atoms, the proposed metasurface can act as a tandem phase modulator, which introduces polarization-decoupled phase profiles for arbitrary circularly and elliptically polarized EMWs based on the Jones matrix. In this way, the proposed metasurface can distinguish a set of orthogonal EMWs with circular or elliptical polarization states and impose arbitrary phase profiles on them independently and simultaneously. For proof-of-concept, bifunctional metasurfaces operating in the microwave region are presented for independent manipulation of three different sets of orthogonal circularly or elliptically polarized EMWs. They create dual independent channels associated with a pair of orthogonal polarization states, performing functions including polarization beam splitting and orbital angular momentum (OAM) multiplexing. Measured and simulated results show a good agreement, confirming that the proposed single-layer reflective metasurfaces are efficient devices that enable meta-devices to independently control arbitrary circular and elliptical polarized EMWs, achieving arbitrary functionalities.