z-logo
open-access-imgOpen Access
Cost-effective digital coherent short-reach transmission system with D8QAM and low-complexity DSP
Author(s) -
Tingting Zhang,
Qian Xiang,
Sen Zhang,
Lei Liu,
Stylianos Sygletos,
Tianjian Zuo
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.422456
Subject(s) - quadrature amplitude modulation , digital signal processing , computer science , electronic engineering , optics , decoding methods , physics , bit error rate , computer hardware , algorithm , engineering
We propose a cost-effective digital coherent scheme with low-complexity digital signal processing (DSP) for short-reach optical interconnection. Differential 8-ary quadrature amplitude modulation (D8QAM) with 1-decision-aided adaptive differential decoding bypasses carrier recovery and enables cycle-slip-free operation. We experimentally demonstrate that the receiver sensitivity of 400-Gb/s D8QAM is insensitive to the laser type, and is the same as 400-Gb/s 16QAM in the case of 2-km transmission with a distributed feedback (DFB) laser. The proposed adaptive equalizer (AEQ) using real-valued finite impulse response (FIR) filters and shorter tap lengths for the real-imaginary filters allows hardware-efficient implementation with high robustness to the receiver-side timing skew. In the case of 400-Gb/s D8QAM 10-km transmission, our AEQ achieves comparable performance as conventional 4×4 real-valued multi-input multi-output (MIMO) and the existing simplified AEQs with complexity reduction of 50% and 14% respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom