Effect of convergent beam array on reducing scintillation in underwater wireless optical communications with pointing errors
Author(s) -
Zongmin Cui,
Peng Yue,
Xiang Yi,
Jing Li
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.421630
Subject(s) - scintillation , optics , beam (structure) , physics , transmitter , underwater , optical communication , underwater acoustic communication , optical wireless , wireless , telecommunications , computer science , channel (broadcasting) , geology , oceanography , detector
In this paper, we propose the convergent beam array to reduce scintillation induced by oceanic turbulence in underwater wireless optical communications (UWOCs) between misaligned transceivers. In the proposed convergent beam array, the propagation directions of beams are slanted inwards and different from each other. First, we present the convergent beam array system and analyze spatial relationships between the transmitter and the individual beam in beam array systems. Then, in order to simulate beams propagation in UWOCs, we review the power spectrum of refractive index fluctuations in oceanic turbulence and analyze the spatial relationship between the misaligned transceivers in view of pointing errors. Finally, we verify the effectiveness of the proposed convergent beam array on scintillation reduction by multistep wave optics simulation. Simulation results show that convergent beam array is able to decrease scintillation indices effectively in UWOCs with pointing errors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom