
High-order exceptional point based optical sensor
Author(s) -
Yulin Wu,
Peiji Zhou,
Ting Li,
Weishi Wan,
Yi Zou
Publication year - 2021
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.418644
Subject(s) - wavelength , optics , resonator , physics , sensitivity (control systems) , perturbation (astronomy) , parameter space , mathematics , electronic engineering , quantum mechanics , engineering , statistics
Exceptional points (EPs) could potentially enhance the sensitivity of an optical sensing system by orders of magnitude. Higher-order EP systems, having more complex physics, can further boost this parameter. In this paper, we investigate the response order of high-order non-Hermitian systems and provide a guideline for designing a sensor with high response order. Based on this design rule, we propose and demonstrate an optical sensor with a fourth-order response, and analyze its associated properties. The four resonant wavelengths of our optical sensor simultaneously collapse at a high-order exceptional point in the parameter space, providing a fourth root relation between the amount of wavelength splitting and the amplitude of the perturbation. A large sensitivity enhancement factor over 100, is observed when the wavelength splitting is compared with traditional single resonator-based sensors under small perturbation conditions.